
🎈

Real-Time Balloon Simulation
Annie Pa Michael Kelly

Abstract
We developed a real-time balloon simulation application using a
mass-spring simulation model and explicit Euler integrator. Our
application reads in a user-specified quad mesh .obj file and
generates a balloon with structural, shear, and flexion springs
between the vertices of the balloon. Our application also allows
the user to inflate and deflate the balloon in real time. Optionally,
the user can apply a vertex position correction algorithm to the
vertices to constrain the balloon’s shape. Additionally, we
implemented sphere-balloon collision detection so that the user
can throw spheres at the balloon.

Introduction
Mass-spring simulation is one of the simplest cloth simulation
models. The simulation model works by creating particles with
mass, generating springs to connect the particles, and then
simulating spring forces, as well as any additional forces, like
gravity, on the particles. This simulation method leads to realistic
results and runs in real time. We chose to use this model in our
balloon simulation because it is fast and easy to implement.

Similar to cloth, we use three types of linear Hookean springs in
our balloon model: structural springs, shear springs, and flexion
springs [Figure 3].

Previous Work
In “Semi-Realistic Balloon Simulation”, Tarantino attempts to
simulate balloons with a mass-spring system. Tarantino does not
use various spring types (structural, shear, flexion, etc), but does
vary the spring constants. However, Tarantino does model a
viscosity force. The balloon model does not include any Provot
correction (Provot, 1995), but does include a correction where if a
spring is overextended, the simulation stops applying new forces
to the spring (Tarantino, 1996). We investigate using Tarantino’s
correction method with interesting results.

Figure 3: A standard cloth
model. The red dots indicate
cloth particles, the black lines
indicate structural springs, the
blue lines indicate shear
springs, and the green lines
indicate flexion springs.

Figure 1: An initially deflated
squirrel balloon.

Figure 2: An inflated squirrel
balloon. Compared to Figure
1, the squirrel’s tail, head, and
feet have changed shape.

🎈

We draw inspiration for our mass-spring system with “Fast
Simulation of Mass-Spring Systems”. In this paper, they approach
how to simulate cloth and mass spring systems with a simpler
model and less calculations to make the system faster. The biggest
difference with the algorithm is how spring forces are calculated,
instead of Provot correction and collecting sums of forces, it’s just
done with an optimized reduction of Hooke’s law, which reduces
the amount of calculations done per particle greatly (Liu et al.,
2013). However, they mention that their implementation does not
really take into account all 3 kinds of springs in traditional cloth
simulation, which results in a less-faithful simulation of cloth. We
made the decision to keep the 3 springs and cached the springs
for each mass to speed up our calculations.

With the advantage of simpler spring calculations, we can fit in
buoyancy calculations. The approach that Jinwook Kim and his
colleagues proposed in their paper. Their algorithm is actually a bit
more complicated than we need because our first goal is to have a
traditionally shaped balloon to work first, but their approach is
quite clever. It takes advantage of the rendered geometry and
uses a “slice” of it to and approximates how mass is distributed
within it to calculate how it should bounce in water (Kim et al.,
2006). We ultimately did not approach this, but it did lend insight
on adding an even force in one direction with respect to amount of
surface area to have better simulated buoyancy.

Technical Challenges
Since we wanted our application to generate balloons out of
arbitrary quad meshes, we could not make any assumptions about
the topology of our balloons, specifically the valence of each
vertex. As a result, we needed to write a .obj parser that would
generate springs between an arbitrary number of faces.

Additionally, we had starter code that simulated cloth with Provot
correction. However, this code assumed that cloth particles were
laid out in a 2D grid and that the number of springs attached to
each particle was the same for each particle. This meant we
needed to do a bit of code refactoring to get the starter code to
work.

Figure 4: An example quad
mesh.

Figure 5: The blue vertex is
the selected vertex and the
vertices in the blue circle are
the nearest vertices.

Figure 6: Red particles are
across from each other in the
face, and red particles are
next to blue particles in the
face.

🎈

Next, we had to determine how to simulate balloon inflation forces
and what (if any) particle position correction should be applied to
our balloon particles at each timestep.

Finally, we wanted the ability to throw spheres at our balloons, so
we needed to implement collision detection and resolution.

The Data Structures
Balloon
Our Balloon data structure contains a vector of Faces, a vector of
BalloonParticles, and a vector of Spheres. It also contains various
constants used in the simulation code. Additionally, each Balloon
can be attached to a string, so we include the position of the
bottom of the spring and the ID of the BalloonParticle attached to
the string.

Face
Each Face struct contains the IDs of the BalloonParticles in the
face. The IDs of BalloonParticles are calculated based on the order
they appear in the .obj file. Faces also contain a normal and area.

BalloonParticle
The BalloonParticle struct contains the original position, position,
velocity, acceleration, and mass of the particle. Each particle also
stores the IDs of the Faces in the balloon that the particle is a part
of and the IDs of the particles that are in the Faces that the particle
is a part of. This allows us to access the local neighborhood of
faces and particles around a given particle. This data is used to
generate the springs. Speaking of springs, BalloonParticles store
vectors of structural, shear, and flexion springs attached to the
particle.

Since we need the particle’s normal for shading and for the
inflation simulation, we cache this normal in the particle and use it
in the rendering code and simulation code. Specifically, the normal
used in the simulation is a cached normal from the previous render
frame. Since we complete multiple simulation timesteps before
rendering a new frame, it is highly likely that the truly correct
particle normal diverges from the cached normal as the simulation
progresses. However, we assume that the timesteps are small

Figure 7: The purple vertex is
the blue vertex’s neighbor.
Vertices under the purple line
are in the purple vertex’s
nearest vertices.

Figure 8: A flexion spring
would be generated between
the blue and green vertices.

Figure 9: A flexion spring
would not be created
between the blue and green
vertices, since they should
create a shear spring.

🎈

enough that the cached normal and correct normal are close
enough that the difference is negligible.

Spring
Springs store pointers to two BalloonParticles, as well as a spring
constant.

Sphere
Spheres contain a mass, radius, position, velocity, and
acceleration.

.obj Loader and Spring Generation
The first half of the .obj loader reads in the vertices and faces and
turns the vertices into BalloonParticles and faces into Face structs.
It also finds the nearest particles and nearest faces for each
BalloonParticle.

The spring generation code is slightly more complex. In [Figure 4],
we see an example quad mesh. In [Figure 5], we see a selected
vertex, highlighted in blue, and the vertices in the local
neighborhood, contained in a blue circle. We can create structural
springs between vertices in the local neighborhood that are
connected to the blue particle by an edge/black line and create
shear springs between vertices that are not connected to the blue
particle by an edge/black line. Some pseudocode is below.

Structural and Shear Spring creation
for each particle p:
 for each p.nearest_particles p2:
 for each p.nearest_faces f:
 if f.shouldCreateStructualSpring(p, p2):
 Create structural spring between p and p2
 Add spring to p
 if f.shouldCreateShearSpring(p, p2):
 Create shear spring between p and p2
 Add spring to p

Figure 10: A deflated turtle
balloon.

Figure 11: Inflated balloon
without particle position
correction.

Figure 12: Inflated balloon
with particle position
correction. Correction is most
apparent on the turtle’s neck
and belly.

🎈

Face::shouldCreateStructuralSpring(p, p2)
 if this.containsParticles(p, p2):
 if p and p2 are adjacent to each other in the face: [Figure 6]
 return true
 return false

Face::shouldCreateShearSpring(p, p2)
 if this.containsParticles(p, p2):
 if p and p2 are across from each other in the face: [Figure 6]
 return true
 return false

Flexion spring creation is more complicated. Flexion springs are
created between particles have one particle in between them that
they are both connected to [Figures 1 and 6]. In order to generate
flexion springs, we take a test particle, find that particle’s
neighbors, then for each neighbor particle that generates a
structural spring with the test particle, we search the neighbor
particle’s neighborhood for a third particle that creates a structural
spring between the neighbor particle and the third particle (the
neighbor’s neighbor of our test particle). The neighbor’s neighbor
particle and our test particle have a flexion spring between them.
However, there are a few edge cases we need to account for. In
[Figure 9], we see a potential particle combination from our
algorithm. The blue and green particles do have one particle
between them, but they are a part of the same face, and the blue
and green particles should create a shear spring, not a flexion
spring. We must account for this in the algorithm.

Flexion Spring creation
for each particle p:
 for each p.nearest_particles p2:
 for each p.nearest_faces f:
 if f.shouldCreateStructualSpring(p, p2):
 for each p2.nearest_particles p3:
 for each p3.nearest_faces f2:
 if f2.shouldCreateStructuralSpring(p2, p3):
 if (p and p3 don’t create a structural or shear
 spring and p != p3):
 Create flexion spring between p and p3
 Add spring to p

Figure 13: Squirrel and sphere
before collision.

Figure 14: Squirrel getting
squished by a sphere.

Figure 15: Squirrel getting
very squished by a sphere.

🎈

Particle Simulation
We used a traditional mass-spring system with our simulation for
the balloon. Traverse through each particle, add up the collective
spring forces when applicable, and use explicit Euler functions to
move the particles in the right direction. With the right spring
constraints, the material “cloth” of the balloon simulates elastic
rubber. To simulate inflation, we project a force that goes in the
direction of the particles Gouraud normals, and that force is
adjusted by a “k_value”, which is calculated as such:

k_val = 100 * k_normal * (closest_face_to_particle /
total_surface_area)

This ensures a proper adjustment of forces according to the
surface area of the balloon, which is realistic to how latex is shaped
for balloons. This is the pseudo code for our force calculations
below:
for each particle p:
 springforce = 0
 springforce += shear spring forces
 springforce += structural spring forces
 springforce += flexion spring forces
 gravity = gravity_force + helium * p.mass
 damp = damping_force * p.velocity
 total = gravity - damp
 k_val = 100 * k_normal *
 (closest_face_to_particle / total_surface_area)
 total += k_val * p.normal
 p.acceleration = total/p.mass
 p.velocity = p.velocity + timestep*p.acceleration
 p.pos = p.pos + timestep*p.velocity

Particle Position Correction
Position correction was taken from a couple of sources. We first
approached this with traditional Provot correction. The results were
undesirable. Using normal Provot made the balloon look like a
larger version of the base model with no rounding or exaggeration
of features commonly seen in weirdly shaped balloons. We had to
loosen the constraints but still have some correction, so alongside
raising the constraints of the springs themselves, we also adopted
Tarantino’s version of correction. His approach was this: if the

Figure 16: The sphere was on
top of the balloon while it was
deflated. As the balloon
inflated, the sphere was
launched upwards. The sphere
has one unit of mass.

Figure 17: A sphere with 100
units of mass is launched like
in Figure 16. It does not fly as
far upwards because it is
heavier.

🎈

spring is at its max, do not contribute spring forces to the particle
anymore. We still correct them position-wise using Provot’s
methods, but the forces being taken away lead to smoother
simulation and more rounded edges because particles do not
move as suddenly. The effect of our correction algorithm can be
seen in [Figures 10, 11, and 12].

Collision Detection and Resolution
After new particle positions, velocities, and accelerations are
calculated, and particle correction is optionally applied, we detect
and resolve collisions. Our application currently only handles
balloon-sphere collisions, since this collision type is relatively
inexpensive. Thus, our collision detection algorithm is
straightforward.

for each sphere s:
 for each balloon particle p:
 if distance(p.position, s.center) < s.radius:
 Move p outside the sphere
 Apply a penalty force to s
 Calculate new acceleration, velocity, and position for s

When moving balloon particles outside of a sphere, we move it
along the direction from the sphere’s center to the particle’s
position. The penalty force is applied in the opposite direction of
the particle’s movement and is proportional to how inflated the
balloon is. While this penalty force calculation is not physically
accurate, it does give convincing results, especially for a real-time
application [Figures 13, 14, and 15]. By varying the mass of a
collision sphere and the inflation of a balloon, we can achieve
different collision scenarios [Figures 16, 17, and 18].

Discussion
After implementing a particle correction algorithm, we noticed that
the impact of the algorithm is very subtle [Figures 11 and 12]. In
fact, we found that on low-poly balloon models, like our squirrel,
using springs with large spring constants constrained the balloon’s
shape quite similarly to our correction algorithm. Additionally, our
algorithm greatly constrains the balloon when the inflation force of
the balloon is large. Correction algorithms like Provot’s algorithm

Figure 19: A string is attached
to the ground and the very
end of the squirrel’s tail.

Figure 20: Squirrel is turning
upside down.

Figure 18: A sphere with 1000
units of mass is launched like
in Figure 16. It barely launches
off the balloon since it is so
heavy.

🎈

were designed to correct springs that are overstretched, since real
cloth cannot stretch as much as simulated cloth without correction.
However, real balloons do stretch quite a lot, so overstretched
springs are not necessarily a bad thing in our simulation. Because
of this, we do not use any correction algorithm in our default
simulation.

We also experimented with torsion springs, which are similar to
flexion springs, but enforce an angle between two particles instead
of a distance. However, we found that these springs had negligible
impact on the balloon’s structure.

Additional Examples
In computer graphics, researchers often use the same models for
demonstrations. Some popular models are the Stanford bunny and
the Stanford armadillo. However, for this project, we propose
adding a new animal friend to the collection of example models:
the RPI squirrel. We chose to use this model because it was readily
available as a quad mesh, which is necessary for our application.
Additionally, we enjoyed seeing the squirrel become a balloon.

In the first example [Figures 19, 20, and 21], we have the squirrel
has its tail attached to a string that is attached to the ground. As
the simulation progresses, the squirrel balloon successfully turns
upside down, as would be expected in real life.

In the second example [Figures 22 and 23], we drop four spheres
of equal mass on to a pillow-shaped balloon. The balloons bounce
off the top of the balloon.

In the third example [Figures 24 and 25], we see how our balloon
simulation handles concave surfaces. The balloon is initially shaped
like a bowl, but as it is inflated, it takes on the shape of a sphere.

Conclusion
Our application simulates balloons realistically in real time. We
adapt a mass-spring cloth simulation model to simulate our
balloons. We apply a helium force to our balloons and apply a
inflation force along surface normals. Finally, we investigated the
use of a particle position correction to constrain the balloon’s

Figure 21: An upside-down
squirrel balloon.

Figure 22: Four spheres
colliding with a pillow-shaped
balloon.

Figure 23: Four spheres
bouncing off a balloon after
colliding.

🎈

shape, and we found that algorithms similar to Provot correction
and Tarantino’s correction algorithm sometimes constrain the
balloon’s shape unrealistically, especially at greater inflation levels.

Acknowledgements
We would like to thank Professor Barb Cutler for her mentorship
and for providing starter code for our application.

References
1. Tarantino, Paul. “Semi-Realistic Balloon Simulation.”
alumni.soe.ucsc.edu/~pault/262paper/262paper.pdf.

2. Liu, Tiantian, et al. “Fast Simulation of Mass-Spring Systems.”
ACM Transactions on Graphics, vol. 32, no. 6, 2013, pp. 1–7.,
doi:10.1145/2508363.2508406.

3. Kim, Jinwook, et al. “Fast GPU Computation of the Mass
Properties of a General Shape and Its Application to Buoyancy
Simulation.” The Visual Computer, vol. 22, no. 9-11, 2006, pp.
856–864., doi:10.1007/s00371-006-0071-x.

4. Provot, Xavier. “Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior.” http://www-
rocq.inria.fr/syntim/research/provot/.

Figure 24: A deflated balloon
with a bowl shape.

Figure 26: A visualization of
the net forces on balloon
particles. 🔥🐿

Figure 25: The balloon inflates
from a bowl shape to a
spherical shape.

