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Abstract 
We developed a real-time balloon simulation application using a 
mass-spring simulation model and explicit Euler integrator. Our 
application reads in a user-specified quad mesh .obj file and 
generates a balloon with structural, shear, and flexion springs 
between the vertices of the balloon. Our application also allows 
the user to inflate and deflate the balloon in real time. Optionally, 
the user can apply a vertex position correction algorithm to the 
vertices to constrain the balloon’s shape. Additionally, we 
implemented sphere-balloon collision detection so that the user  
can throw spheres at the balloon. 
 
 
Introduction 
Mass-spring simulation is one of the simplest cloth simulation 
models. The simulation model works by creating particles with 
mass, generating springs to connect the particles, and then 
simulating spring forces, as well as any additional forces, like 
gravity, on the particles. This simulation method leads to realistic 
results and runs in real time. We chose to use this model in our 
balloon simulation because it is fast and easy to implement. 
 
Similar to cloth, we use three types of linear Hookean springs in 
our balloon model: structural springs, shear springs, and flexion 
springs [Figure 3]. 
 
 
Previous Work 
In “Semi-Realistic Balloon Simulation”, Tarantino attempts to 
simulate balloons with a mass-spring system. Tarantino does not 
use various spring types (structural, shear, flexion, etc), but does 
vary the spring constants. However, Tarantino does model a 
viscosity force. The balloon model does not include any Provot 
correction (Provot, 1995), but does include a correction where if a 
spring is overextended, the simulation stops applying new forces 
to the spring (Tarantino, 1996). We investigate using Tarantino’s 
correction method with interesting results. 
 

Figure 3: A standard cloth 
model. The red dots indicate 
cloth particles, the black lines 
indicate structural springs, the 
blue lines indicate shear 
springs, and the green lines 
indicate flexion springs. 

Figure 1: An initially deflated 
squirrel balloon. 

Figure 2: An inflated squirrel 
balloon. Compared to Figure 
1, the squirrel’s tail, head, and 
feet have changed shape. 
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We draw inspiration for our mass-spring system with “Fast 
Simulation of Mass-Spring Systems”. In this paper, they approach 
how to simulate cloth and mass spring systems with a simpler 
model and less calculations to make the system faster. The biggest 
difference with the algorithm is how spring forces are calculated, 
instead of Provot correction and collecting sums of forces, it’s just 
done with an optimized reduction of Hooke’s law, which reduces 
the amount of calculations done per particle greatly (Liu et al., 
2013). However, they mention that their implementation does not 
really take into account all 3 kinds of springs in traditional cloth 
simulation, which results in a less-faithful simulation of cloth. We 
made the decision to keep the 3 springs and cached the springs 
for each mass to speed up our calculations.  
 
With the advantage of simpler spring calculations, we can fit in 
buoyancy calculations. The approach that Jinwook Kim and his 
colleagues proposed in their paper. Their algorithm is actually a bit 
more complicated than we need because our first goal is to have a 
traditionally shaped balloon to work first, but their approach is 
quite clever. It takes advantage of the rendered geometry and 
uses a “slice” of it to and approximates how mass is distributed 
within it to calculate how it should bounce in water (Kim et al., 
2006).  We ultimately did not approach this, but it did lend insight 
on adding an even force in one direction with respect to amount of 
surface area to have better simulated buoyancy. 
 
 
Technical Challenges 
Since we wanted our application to generate balloons out of 
arbitrary quad meshes, we could not make any assumptions about 
the topology of our balloons, specifically the valence of each 
vertex. As a result, we needed to write a .obj parser that would 
generate springs between an arbitrary number of faces.  
 
Additionally, we had starter code that simulated cloth with Provot 
correction. However, this code assumed that cloth particles were 
laid out in a 2D grid and that the number of springs attached to 
each particle was the same for each particle. This meant we 
needed to do a bit of code refactoring to get the starter code to 
work.  
 

Figure 4: An example quad 
mesh. 

Figure 5: The blue vertex is 
the selected vertex and the 
vertices in the blue circle are 
the nearest vertices. 

Figure 6: Red particles are 
across from each other in the 
face, and red particles are 
next to blue particles in the 
face.  
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Next, we had to determine how to simulate balloon inflation forces 
and what (if any) particle position correction should be applied to 
our balloon particles at each timestep. 
 
Finally, we wanted the ability to throw spheres at our balloons, so 
we needed to implement collision detection and resolution. 
 
 
The Data Structures 
Balloon 
Our Balloon data structure contains a vector of Faces, a vector of 
BalloonParticles, and a vector of Spheres. It also contains various 
constants used in the simulation code. Additionally, each Balloon 
can be attached to a string, so we include the position of the 
bottom of the spring and the ID of the BalloonParticle attached to 
the string. 
 
Face 
Each Face struct contains the IDs of the BalloonParticles in the 
face. The IDs of BalloonParticles are calculated based on the order 
they appear in the .obj file. Faces also contain a normal and area.  
 
BalloonParticle 
The BalloonParticle struct contains the original position, position, 
velocity, acceleration, and mass of the particle. Each particle also 
stores the IDs of the Faces in the balloon that the particle is a part 
of and the IDs of the particles that are in the Faces that the particle 
is a part of. This allows us to access the local neighborhood of 
faces and particles around a given particle. This data is used to 
generate the springs. Speaking of springs, BalloonParticles store 
vectors of structural, shear, and flexion springs attached to the 
particle. 
 
Since we need the particle’s normal for shading and for the 
inflation simulation, we cache this normal in the particle and use it 
in the rendering code and simulation code. Specifically, the normal 
used in the simulation is a cached normal from the previous render 
frame. Since we complete multiple simulation timesteps before 
rendering a new frame, it is highly likely that the truly correct 
particle normal diverges from the cached normal as the simulation 
progresses. However, we assume that the timesteps are small 

Figure 7: The purple vertex is 
the blue vertex’s neighbor. 
Vertices under the purple line 
are in the purple vertex’s 
nearest vertices. 

Figure 8: A flexion spring 
would be generated between 
the blue and green vertices. 

Figure 9: A flexion spring 
would not be created 
between the blue and green 
vertices, since they should 
create a shear spring. 
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enough that the cached normal and correct normal are close 
enough that the difference is negligible.  
 
Spring 
Springs store pointers to two BalloonParticles, as well as a spring 
constant. 
 
Sphere 
Spheres contain a mass, radius, position, velocity, and 
acceleration. 
 
 
.obj Loader and Spring Generation 
The first half of the .obj loader reads in the vertices and faces and 
turns the vertices into BalloonParticles and faces into Face structs. 
It also finds the nearest particles and nearest faces for each 
BalloonParticle. 
 
The spring generation code is slightly more complex. In [Figure 4], 
we see an example quad mesh. In [Figure 5], we see a selected 
vertex, highlighted in blue, and the vertices in the local 
neighborhood, contained in a blue circle. We can create structural 
springs between vertices in the local neighborhood that are 
connected to the blue particle by an edge/black line and create 
shear springs between vertices that are not connected to the blue 
particle by an edge/black line. Some pseudocode is below. 
 
Structural and Shear Spring creation 
for each particle p: 
    for each p.nearest_particles p2: 
        for each p.nearest_faces f: 
            if f.shouldCreateStructualSpring(p, p2): 
               Create structural spring between p and p2 
               Add spring to p 
            if f.shouldCreateShearSpring(p, p2): 
               Create shear spring between p and p2 
               Add spring to p 
 
 
 
 
 

Figure 10: A deflated turtle 
balloon. 

Figure 11: Inflated balloon 
without particle position 
correction. 

Figure 12: Inflated balloon 
with particle position 
correction. Correction is most 
apparent on the turtle’s neck 
and belly. 
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Face::shouldCreateStructuralSpring(p, p2) 
    if this.containsParticles(p, p2): 
        if p and p2 are adjacent to each other in the face: [Figure 6] 
            return true 
    return false 
 
Face::shouldCreateShearSpring(p, p2) 
    if this.containsParticles(p, p2): 
        if p and p2 are across from each other in the face: [Figure 6] 
            return true 
    return false 
 
Flexion spring creation is more complicated. Flexion springs are 
created between particles have one particle in between them that 
they are both connected to [Figures 1 and 6]. In order to generate 
flexion springs, we take a test particle, find that particle’s 
neighbors, then for each neighbor particle that generates a 
structural spring with the test particle, we search the neighbor 
particle’s neighborhood for a third particle that creates a structural 
spring between the neighbor particle and the third particle (the 
neighbor’s neighbor of our test particle). The neighbor’s neighbor 
particle and our test particle have a flexion spring between them. 
However, there are a few edge cases we need to account for. In 
[Figure 9], we see a potential particle combination from our 
algorithm. The blue and green particles do have one particle 
between them, but they are a part of the same face, and the blue 
and green particles should create a shear spring, not a flexion 
spring. We must account for this in the algorithm. 
 
Flexion Spring creation 
for each particle p: 
    for each p.nearest_particles p2: 
        for each p.nearest_faces f: 
            if f.shouldCreateStructualSpring(p, p2): 
                for each p2.nearest_particles p3: 
                    for each p3.nearest_faces f2: 
                        if f2.shouldCreateStructuralSpring(p2, p3): 
                            if (p and p3 don’t create a structural or shear 
                               spring and p != p3): 
                                Create flexion spring between p and p3 
                                Add spring to p    
 

Figure 13: Squirrel and sphere 
before collision. 

Figure 14: Squirrel getting 
squished by a sphere. 

Figure 15: Squirrel getting 
very squished by a sphere. 
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Particle Simulation 
We used a traditional mass-spring system with our simulation for 
the balloon. Traverse through each particle, add up the collective 
spring forces when applicable, and use explicit Euler functions to 
move the particles in the right direction. With the right spring 
constraints, the material “cloth” of the balloon simulates elastic 
rubber. To simulate inflation, we project a force that goes in the 
direction of the particles Gouraud normals, and that force is 
adjusted by a “k_value”, which is calculated as such: 
  
k_val = 100 * k_normal * (closest_face_to_particle / 
total_surface_area) 
 
This ensures a proper adjustment of forces according to the 
surface area of the balloon, which is realistic to how latex is shaped 
for balloons. This is the pseudo code for our force calculations 
below: 
for each particle p: 
    springforce = 0 
    springforce += shear spring forces 
    springforce += structural spring forces 
    springforce += flexion spring forces 
    gravity = gravity_force + helium * p.mass 
    damp = damping_force * p.velocity 
    total = gravity - damp 
    k_val = 100 * k_normal *  
        (closest_face_to_particle / total_surface_area) 
    total += k_val * p.normal 
    p.acceleration = total/p.mass 
    p.velocity = p.velocity + timestep*p.acceleration 
    p.pos = p.pos + timestep*p.velocity 
 
 
Particle Position Correction 
Position correction was taken from a couple of sources. We first 
approached this with traditional Provot correction. The results were 
undesirable. Using normal Provot made the balloon look like a 
larger version of the base model with no rounding or exaggeration 
of features commonly seen in weirdly shaped balloons. We had to 
loosen the constraints but still have some correction, so alongside 
raising the constraints of the springs themselves, we also adopted 
Tarantino’s version of correction. His approach was this: if the 

Figure 16: The sphere was on 
top of the balloon while it was 
deflated. As the balloon 
inflated, the sphere was 
launched upwards. The sphere 
has one unit of mass. 

Figure 17: A sphere with 100 
units of mass is launched like 
in Figure 16. It does not fly as 
far upwards because it is 
heavier. 
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spring is at its max, do not contribute spring forces to the particle 
anymore. We still correct them position-wise using Provot’s 
methods, but the forces being taken away lead to smoother 
simulation and more rounded edges because particles do not 
move as suddenly. The effect of our correction algorithm can be 
seen in [Figures 10, 11, and 12]. 
 
 
Collision Detection and Resolution 
After new particle positions, velocities, and accelerations are 
calculated, and particle correction is optionally applied, we detect 
and resolve collisions. Our application currently only handles 
balloon-sphere collisions, since this collision type is relatively 
inexpensive. Thus, our collision detection algorithm is 
straightforward. 
 
for each sphere s: 
    for each balloon particle p: 
        if distance(p.position, s.center) < s.radius: 
            Move p outside the sphere 
            Apply a penalty force to s 
    Calculate new acceleration, velocity, and position for s 
 
When moving balloon particles outside of a sphere, we move it 
along the direction from the sphere’s center to the particle’s 
position. The penalty force is applied in the opposite direction of 
the particle’s movement and is proportional to how inflated the 
balloon is. While this penalty force calculation is not physically 
accurate, it does give convincing results, especially for a real-time 
application [Figures 13, 14, and 15]. By varying the mass of a 
collision sphere and the inflation of a balloon, we can achieve 
different collision scenarios [Figures 16, 17, and 18]. 
       
 
Discussion 
After implementing a particle correction algorithm, we noticed that 
the impact of the algorithm is very subtle [Figures 11 and 12]. In 
fact, we found that on low-poly balloon models, like our squirrel, 
using springs with large spring constants constrained the balloon’s 
shape quite similarly to our correction algorithm. Additionally, our 
algorithm greatly constrains the balloon when the inflation force of 
the balloon is large. Correction algorithms like Provot’s algorithm 

Figure 19: A string is attached 
to the ground and the very 
end of the squirrel’s tail. 

Figure 20: Squirrel is turning 
upside down. 

Figure 18: A sphere with 1000 
units of mass is launched like 
in Figure 16. It barely launches 
off the balloon since it is so 
heavy. 
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were designed to correct springs that are overstretched, since real 
cloth cannot stretch as much as simulated cloth without correction. 
However, real balloons do stretch quite a lot, so overstretched 
springs are not necessarily a bad thing in our simulation. Because 
of this, we do not use any correction algorithm in our default 
simulation. 
 
We also experimented with torsion springs, which are similar to 
flexion springs, but enforce an angle between two particles instead 
of a distance. However, we found that these springs had negligible 
impact on the balloon’s structure. 
 
 
Additional Examples 
In computer graphics, researchers often use the same models for 
demonstrations. Some popular models are the Stanford bunny and 
the Stanford armadillo. However, for this project, we propose 
adding a new animal friend to the collection of example models: 
the RPI squirrel. We chose to use this model because it was readily 
available as a quad mesh, which is necessary for our application. 
Additionally, we enjoyed seeing the squirrel become a balloon. 
 
In the first example [Figures 19, 20, and 21], we have the squirrel 
has its tail attached to a string that is attached to the ground. As 
the simulation progresses, the squirrel balloon successfully turns 
upside down, as would be expected in real life. 
 
In the second example [Figures 22 and 23], we drop four spheres 
of equal mass on to a pillow-shaped balloon. The balloons bounce 
off the top of the balloon. 
 
In the third example [Figures 24 and 25], we see how our balloon 
simulation handles concave surfaces. The balloon is initially shaped 
like a bowl, but as it is inflated, it takes on the shape of a sphere. 
 
 
Conclusion 
Our application simulates balloons realistically in real time. We 
adapt a mass-spring cloth simulation model to simulate our 
balloons. We apply a helium force to our balloons and apply a 
inflation force along surface normals. Finally, we investigated the 
use of a particle position correction to constrain the balloon’s 

Figure 21: An upside-down 
squirrel balloon. 

Figure 22: Four spheres 
colliding with a pillow-shaped 
balloon. 

Figure 23: Four spheres 
bouncing off a balloon after 
colliding. 
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shape, and we found that algorithms similar to Provot correction 
and Tarantino’s correction algorithm sometimes constrain the 
balloon’s shape unrealistically, especially at greater inflation levels. 
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Figure 24: A deflated balloon 
with a bowl shape. 

Figure 26: A visualization of 
the net forces on balloon 
particles. 🔥🐿 
  

Figure 25: The balloon inflates 
from a bowl shape to a 
spherical shape. 


